QUANTUM TIME: Scientists Have Created the World’s First ‘Time Machine’

0 1,465

Physicists have revealed a major Time Machine breakthrough after successfully reversing time using quantum computers!

Now what does that mean?

It means that they were able to go a fraction of a second into the past, and Russian physicists from the Moscow Institute of Physics and Technology who teamed up with experts from the US and Switzerland, claim that they have effectively achieved the same principle of time travel.

The example that they use is that the ‘broken pool balls were able to re-order themselves into their original formation.’

The researchers have described it as being able to move the smaller-than-atom sized objects in the opposite direction of ‘time’s arrow’.

The experiments involved electrons – negatively charged particles that make up an atom – found in the realm of quantum mechanics, the study of sub-atomic particles.

They gave the analogy of a break for a game of pool, in which the balls are substitutes for the electrons.

After the break the ‘balls’ are scattered in what should be a haphazard way, according to the laws of physics.

But researchers managed to make them reform in their original triangle ‘break’ order – appearing as if they were turning back time – using a special quantum computer.’

The Sun explains:

Not quite Dr Who, but even Time Lords had to start somewhere . . .

So how does it work? Well the time machine is actually a rudimentary quantum computer made up of electron qubits.

A qubit is a the basic unit of quantum information – a unit that represents one, zero, and both one and zero at the same time.

Researchers ran an “evolution program”, which caused the qubits to enter a complicated changing pattern of ones and zeroes. And during this process, the order was lost – like hitting balls at the start of a game of pool.

A separate program then modified the state of this quantum computer so that it evolved backwards, returning from chaos to order. This allowed the qubits to return to their original starting point.

Scientists were able to perform this so-called “time reversal” successfully 85 per cent of the time with two qubits, and had a 50 per cent success rate with three qubits. The idea was to test out a theory about whether time can reverse itself – at least for a single particle for a fraction of a second. When scientists observe an electron, they can’t figure out its exact position, but can determine where it’s roughly located.

QUANTUM TIME: Scientists Have Created the World’s First ‘Time Machine'

But over time, it becomes more difficult to tell where that electron is, because the region of space containing it “spreads out”. Or rather, it becomes more “chaotic”.

This increases the uncertainty of the electron’s position – a core principle of Schrodinger’s equation.

The team were able to then calculate the probability of a “smeared out” electron spontaneously “localizing” back to its recent past – travelling through time, in effect.

And it turns out that if you observe 10 billion freshly localized electrons every second for 13.7 billion years, you’d only see this happen once.

And even then, the electron would only travel no more than a ten-billionth of a second into the past.

That’s not ideal, because not being able to predict time-reversal makes the system useless to scientists. That’s why it’s so important that scientists were able to successfully “reverse time on demand” with a quantum computer.

Are you as confused as I am at this point? Good. I did not want to be alone! Share the article and make sure your friends are confused too!

Maybe this will help:

What is quantum computing?

  • Quantum computing could use interactive photons, but what actually is it?
  • Computer chips are getting smaller and faster, but there’s a limit to how small we can go
  • Quantum computing is a way to keep making computers faster once we hit the limit of normal computer chips
  • It’s based on the idea of using tiny particles that can exist in multiple random “states” at any one time
  • Quantum bits (or qubits) in a quantum computer could be a one, a zero, or both at the same time
  • Think of a giant pole running through the centre of the earth
  • The pole would be in the middle, but also at both ends of the planet, simultaneously
  • In this example, a qubit could be at any point of the planet, and at all points of the planet, at any given time
  • That means a qubit could store huge amounts of information, because it has millions of possible “states”
  • This means that a quantum computer would be able to perform complex tasks very quickly by utilising qubits
  • Sadly, quantum computers are still very much a work-in-progress
  • But scientists hope that by using tiny particles like photons, it would be possible to advance quantum computing research
You might also like

Leave A Reply

Your email address will not be published.